Antinociceptive effect of natural and synthetic alkamides involves TRPV1 receptors.

نویسندگان

  • Vianey de la Rosa-Lugo
  • Macdiel Acevedo-Quiroz
  • Myrna Déciga-Campos
  • María Yolanda Rios
چکیده

OBJECTIVE To establish the role of TRPV1 receptor in the antinociceptive effect of natural alkamides (i.e. affinin, longipinamide A, longipenamide A and longipenamide B) isolated from Heliopsis longipes (A. Gray) S.F. Blake and some related synthetic alkamides (i.e. N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide). METHODS The orofacial formalin test was used to assess the antinociceptive activity of natural (1-30 μg, orofacial region) and synthetic alkamides (0.1-100 μg, orofacial region). The alkamide capsaicin was used as positive control, while capsazepine was used to evaluate the possible participation of TRPV1 receptor in alkamide-induced antinociception. KEY FINDINGS Natural (1-30 μg) and synthetic (0.1-100 μg) alkamides administered to the orofacial region produced antinociception in mice. The antinociceptive effect induced by affinin, N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide was antagonized by capsazepine but not by vehicle. CONCLUSIONS These results suggest that alkamide affinin, longipinamide A, longipenamide A and longipenamide B isolated from Heliopsis longipes as well as the synthesized analogue compounds N-isobutyl-feruloylamide and N-isobutyl-dihydroferuloylamide produce their effects by activating TRPV1 receptor and they may have potential for the development of new analgesic drugs for the treatment of orofacial pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capsazepine, a Transient Receptor Potential Vanilloid Type 1 (TRPV1) Antagonist, Attenuates Antinociceptive Effect of CB1 Receptor agonist, WIN55,212-2, in the Rat Nucleus Cuneiformis

Introduction: Nucleus cuneiformis (NCF), as part of descending pain inhibitory system, cooperates with periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) in supraspinal modulation of pain. Cannabinoids have analgesic effects in the PAG, RVM and NCF. The transient receptor potential vanilloid type 1(TRPV1) can be activated by anandamide and WIN55,212-2 as a cannabinoid receptor ago...

متن کامل

The antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis of male rats is mediated by estrogenic receptors

Introduction: 17β-Estradiol is a neuroactive steroid and its pain modulatory role has been well studied previously. 17β-Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membrane - bound receptors such as glutamate and GABAA receptors. Paragigantocellularis lateralis (LPGi) is also involved in pain modulation and perception, in addition...

متن کامل

The antinociceptive effect of 17β-estradiol in the nucleus paragigantocellularis lateralis of male rats may be mediated by the NMDA receptors

Introduction: The nucleus paragigantocellularis lateralis (LPGi) is involved in the descending pain modulation. The neurostreoid, 17β-estradiol found in the PGi nucleus and modulates nociception by binding to estrogen receptors and also by allosteric interaction with NMDA receptors. In this study, the role of NMDA receptors in the 17β-estradiol-induced pain modulation was investig...

متن کامل

Endocannabinoid System and TRPV1 Receptors in the Dorsal Hippocampus of the Rats Modulate Anxiety-like Behaviors

Objective(s) Fatty acid is amide hydrolase which reduce endogenous anandamide. Transient receptor potential vanilloid-1 (TRPV1) channels have been reported to have a role in the modulation of anxiety-like behaviors in rodents. In the present study, the effects of either endocannabinoid system or TRPV1 channels and their possible interaction on anxiety-like behaviors of the rats were explored. ...

متن کامل

Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain

The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol's antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacy and pharmacology

دوره 69 7  شماره 

صفحات  -

تاریخ انتشار 2017